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SYMMETRIES AND EXACT SOLUTIONS

OF THE SHALLOW WATER EQUATIONS

FOR A TWO-DIMENSIONAL SHEAR FLOW

UDC 532.591+517.958A. A. Chesnokov

This paper considers nonlinear equations describing the propagation of long waves in two-dimensional
shear flow of a heavy ideal incompressible fluid with a free boundary. A nine-dimensional group
of transformations admitted by the equations of motion is found by symmetry methods. Two-
dimensional subgroups are used to find simpler integrodifferential submodels which define classes
of exact solutions, some of which are integrated. New steady-state and unsteady rotationally sym-
metric solutions with a nontrivial velocity distribution along the depth are obtained.
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Introduction. Approximate models of shallow-water theory are used to model wave processes in fluids
and to describe large-scale motions in the atmosphere and ocean. A mathematical foundation for the classical
(depth-averaged) shallow-water approximation was given by Ovsyannikov [1]. The long-wave model taking into
account velocity shear along the depth, especially in the two-dimensional case has been studied to a lesser extent.
The nonlinear equations of rotational shallow water for plane-parallel motions were studied in [2–7], etc., where
infinite series of conservation laws were found, classes of exact solutions were constructed, and conditions for the
generalized hyperbolicity and well-posedness of the Cauchy problem were formulated. Teshukov [8, 9] studied the
shallow-water equations for two-dimensional shear flow, established the existence of simple waves, constructed an
extension of Prandtl–Meyer waves, and formulated conditions for the generalized hyperbolicity of the steady-state
equations.

In the present work, a theoretical group analysis of the two-dimensional shallow-water equations for shear
flows was performed. The 9-dimensional group of the admitted transformations was found. It was established
that the Lie algebra of operators L9 corresponding to these transformations is isomorphic to the Lie algebra of the
admitted operators for the equations of two-dimensional isentropic motion of a polytropic gas with an adiabatic
exponent γ = 2, for which the optimal system subalgebras [10] is known. New classes of exact solutions were con-
structed using an optimal system of subalgebras that allows a classification of submodels. Steady-state rotationally
symmetric solutions describing motion with zones of return flow were obtained. Stable unsteady shear solutions
describing the spread (collapse) of a parabolic cavity were found.

1. Mathematical Model and Admitted Transformations. The solutions of the system of differential
equations

ut + uux + vuy + wuz + ρ−1px = 0,

vt + uvx + vvy + wvz + ρ−1py = 0, ρ−1pz = −g, (1)

ux + vy + wz = 0 [−∞ < x <∞, −∞ < y <∞, 0 ≤ z ≤ h(t, x, y)]
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with the boundary conditions

z = 0: w = 0, z = h(t, x, y): ht + uhx + vhy = w, p = p0 (2)

describe the unsteady three-dimensional motion of an ideal incompressible fluid with a free boundary above an
even bottom in a gravity field in the long-wave approximation. Model (1) follows from the exact Euler equations
in the long-wave limit ε = H0/L0 → 0, where H0 and L0 are the characteristic vertical scale and the characteristic
wave length. The dimensionless variables t, x, y, z, u, v, w, p, and h correspond to time, Cartesian coordinates,
velocity components, pressure, and fluid layer depth; the dimensionless constants ρ and g are the fluid density and
the acceleration due to gravity (without loss of generality, one can set g = 1). By virtue of the third equation of
system (1), the fluid pressure is hydrostatic and is distributed along the depth as

p = ρg(h− z) + p0

(taking into account the dynamic condition on the free boundary), which allows the pressure to be eliminated from
Eqs. (1).

To study the symmetry properties of the examined model, it is reasonable to simplify the kinematic condition
on the free boundary using the change of variables

z′ =
z

h(t, x, y)
, w′ =

dz′

dt
=

1
h

(
w − z

h
(ht + uhx + vhy)

)
.

In the new variables, system (1) becomes

ut + uux + vuy + w′uz′ + ghx = 0, vt + uvx + vvy + w′vz′ + ghy = 0,

ht + uhx + vhy + h(ux + vy + w′
z′) = 0, hz′ = 0.

(3)

The boundary conditions (2) are written as

w′
∣∣∣
z′=0

= 0, w′
∣∣∣
z′=1

= 0. (4)

System (3) includes the equation hz′ = 0. which implies that all unknown functions u depend on all independent
variables x.

According to the general theory of group analysis [11], we define the infinitesimal operator X and its first
continuation Y :

X = ξi(x,u) ∂xi + ηj(x,u) ∂uj , Y = X + ζj
i ∂uj

i
(i, j = 1, . . . , 4).

Here

x = (x1, . . . , x4) = (t, x, y, z′), u = (u1, . . . , u4) = (u, v, w′, h),

ζj
i = Diη

j − uj
iDiξ

j , Di =
∂

∂xi
+ uj

i

∂

∂uj

(
uj

i =
∂uj

∂xi

)
,

the summation is performed over repeated indices. To calculate the group of transformations admitted by system (3),
we subject it to the first continuation of the operator X and pass to the set of solutions of system (3). As a result,
we obtain a system of determining equations for the required functions ξi(x,u) and ηj(x,u) that admits splitting
in the variables uj

i . Omitting the bulky intermediate calculations, result of calculation of the group is as follows:

ξ1 = a1t
2 + a2t+ a3, ξ2 = a1tx+ b1x+ b2y + b3t+ b4,

ξ3 = a1ty − b2x+ b1y + c1t+ c2, ξ4 = d1z
′ + d2(t, x, y),

η1 = (b1 − a2 − a1t)u+ b2v + a1x+ b3, (5)

η2 = −b2u+ (b1 − a2 − a1t)v + a1y + c1,

η3 = d2xu+ d2yv + d2t + (d1 − a2 − a1t)w′, η4 = 2(b1 − a2 − a1t)h.

738



TABLE 1
Commutators L9

Operator X1 X2 X3 X4 X5 X6 X7 X8 X9

X1 0 0 0 0 X2 X1 0 X3 X1

X2 0 0 0 0 −X1 X2 0 X4 X2

X3 0 0 0 0 X4 X3 −X1 0 −X3

X4 0 0 0 0 −X3 X4 −X2 0 −X4

X5 −X2 X1 −X4 X3 0 0 0 0 0
X6 −X1 −X2 −X3 −X4 0 0 0 0 0
X7 0 0 X1 X2 0 0 0 X9 2X7

X8 −X3 −X4 0 0 0 0 −X9 0 −2X8

X9 −X1 −X2 X3 X4 0 0 −2X7 2X8 0

Here ai, bi, c1, and d1 are constants. We require that boundary conditions (4) be invariant under the obtained
transformations (5) admitted by Eqs. (3). It is easy to see that this requirement leads to the following constraints:
d1 = 0 and d2 = 0. Thus, system (3), (4) admits the Lie algebra of the operators L9:

X1 = ∂x, X2 = ∂y, X3 = t ∂x + ∂u,

X4 = t ∂y + ∂v, X5 = −y ∂x + x∂y − v ∂u + u ∂v,

X6 = x∂x + y ∂y + u ∂u + v ∂v + 2h ∂h, X7 = ∂t, (6)

X8 = t2 ∂t + tx ∂x + ty ∂y + (x− tu) ∂u + (y − tv) ∂v − 2tw′ ∂w′ − 2th ∂h,

X9 = 2t ∂t + x∂x + y ∂y − u ∂u − v ∂v − 2w′ ∂w′ − 2h ∂h.

It was established that the shallow-water equations for two-dimensional shear flow admit translations in time and
the horizontal two-dimensional variables, Galilean translations in x and y, two stretchings, rotation about the z
axis, and nontrivial projective transformation.

In the theoretical group analysis of the model, an important and labor-consuming step is to construct an
optimal system of subalgebras [12] for the obtained Lie algebra of operators. This can be done invoking the results
of the studies performed using the SUBMODEL program [13] at the Institute of Hydrodynamics of the Siberian
Division of the Russian Academy of Sciences. From Table 1, it follows that the Lie algebra L9 of operators (6)
is decomposed into the semidirect sum of the radical J = {X1, X2, X3, X4, X5, X6} and the Levy factor N =
{X7, X8, X9}. The Lie algebra L9 coincides with the Lie algebra of the operators admitted by the equations of
two-dimensional isentropic motion of a polytropic gas with γ = 2, for which an optimal system of subalgebras is
constructed in [10]. The system is optimal the sense that the solutions obtained by means of its representatives
exhaust all possible invariant and partially invariant solutions to within the change of variables.

To construct and analyze the exact solutions of the long-wave model for two-dimensional shear flow using
the obtained symmetries (6), it is convenient to pass to semi-Lagrangian coordinates (x, y, λ). This passage is
performed by changing the vertical Eulerian variable z = Φ(t, x, y, λ), where the function Φ(t, x, y, λ) is a solution
of the Cauchy problem [3]

Φt + u(t, x, y,Φ)Φx + v(t, x, y,Φ)Φy = w(t, x, y,Φ),

Φ(0, x, y, λ) = λh(0, x, y) (0 ≤ λ ≤ 1).

Then, we obtain the following integrodifferential system of equations for the required quantities u(t, x, y, λ),
v(t, x, y, λ), and H(t, x, y, λ) = Φλ [8]

ut + uux + vuy + g

1∫

0

Hx dλ = 0, vt + uvx + vvy + g

1∫

0

Hy dλ = 0, Ht + (uH)x + (vH)y = 0. (7)

The change of variables is reversible if the condition Φλ > 0 is satisfied.
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We denote by X ′
i the operators admitted by system (7) that correspond to the transformations Xi specified

in Eulerian coordinates in (6). The operators X ′
i have the form

X ′
i = Xi (i = 1, . . . , 5, 7), X ′

6 = x∂x + y ∂y + u ∂u + v ∂v + 2H ∂H ,

X ′
8 = t2 ∂t + tx ∂x + ty ∂y + (x− tu) ∂u + (y − tv) ∂v − 2tH ∂H ,

X ′
9 = 2t ∂t + x∂x + y ∂y − u ∂u − v ∂v − 2H ∂H .

The obtained symmetries of the shallow-water equations for two-dimensional shear flows and the optimal system of
subalgebras constructed in [10] and containing 179 representatives allow the construction of invariant and partially
invariant solutions of the model. In the case of no velocity shear along the depth (uλ = vλ = 0 andH = h), model (7)
reduces to the two-dimensional equations of isentropic gas dynamics for a polytropic gas with an adiabatic exponent
γ = 2 and all solutions of this model of gas dynamics are a particular class of solutions of the more general system (7).
Thus, of greatest interest is to obtain solutions with nontrivial velocity distributions along the depth that take into
account the specificity of shear flows.

2. Rotationally Symmetric Submodels. In the paper, we consider all submodels constructed from two-
dimensional representatives of the optimal system of subalgebras θL9 and containing the rotation operator as one of
the basic operators. There are five such representatives (the optimal system includes a total of 34 two-dimensional
subalgebras). Below, we give invariant rotationally symmetric submodels of Eqs. (7) and representations of solutions
using the following notation for polar coordinates and the radial and circumferential velocity components:

r =
√
x2 + y2, θ = arctan

y

x
, U =

xu + yv√
x2 + y2

, V =
xv − yu√
x2 + y2

.

1. The submodel constructed from the subalgebra (X5, X6) is given by

ϕt + ϕ2 − ψ2 + 2g

1∫

0

η dλ = 0, ψt + 2ϕψ = 0, ηt + 4ϕη = 0. (8)

The solution is represented as

U = rϕ(t, λ), V = rψ(t, λ), H = r2η(t, λ).

2. The submodel constructed from the subalgebras (X5, X7) is given by

∂

∂r

(U2

2
+ g

1∫

0

H dλ
)

=
V 2

r
, U

∂ (rV )
∂r

= 0,
∂ (rUH)

∂r
= 0 (9)

(U , V , and H are functions of the variables r and λ).
3. The submodel constructed from the subalgebras (X5, X6 +X7) is given by

ζ(ϕ− 1)ϕζ + ϕ2 − ψ2 + g

1∫

0

(2η + ζηζ) dλ = 0,

ζ(ϕ− 1)ψζ + 2ϕψ = 0, ζ(ϕ− 1)ηζ + ζηϕζ + 4ϕη = 0.

The solution is represented as

U = rϕ(ζ, λ), V = rψ(ζ, λ), H = r2η(ζ, λ), ζ = r exp (−t).
4. The submodel constructed from the subalgebras (X5, bX6 +X7 +X8) is given by

(ϕ − bζ)ζϕζ + bζϕ− ψ2 + ζ2 + gζ

1∫

0

ηζ dλ = 0,

(ϕ− bζ)ζψζ + (ϕ+ bζ)ψ = 0, (ϕ− bζ)ζηζ + ηϕζ + (ϕ+ 2bζ)η = 0.
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The solution is represented as

U =
ϕ(ζ, λ)√
t2 + 1

exp (b arctan t) +
rt

t2 + 1
, V =

ϕ(ζ, λ)√
t2 + 1

exp (b arctan t),

H =
η(ζ, λ)
t2 + 1

exp (2b arctan t), ζ =
r√
t2 + 1

exp (−b arctan t) (b ≥ 0).

5. The submodel constructed from the subalgebra (X5, bX6 +X9) is given by

(2ϕ− (b+ 1)ζ)ζϕζ + (b− 1)ζϕ− 2ψ2 + 2gζ

1∫

0

ηζ dλ = 0,

(2ϕ− (b+ 1)ζ)ζψζ + (2ϕ+ (b− 1)ζ)ψ = 0, (2ϕ− (b+ 1)ζ)ζηζ + 2ζηϕζ + 2(b− 1)ζη + 2ϕη = 0.

The solution is represented as

U = ϕ(ζ, λ)t(b−1)/2, V = ψ(ζ, λ)t(b−1)/2,

H = η(ζ, λ)tb−1, ζ = rt(b+1)/2 (b ≥ 0).

3. Spread (Collapse) a Parabolic Cavity. For the integrodifferential submodel (8), a class of solutions is
obtained that describes the shear motion of a fluid for broadening or narrowing of a parabolic cavity. The occurrence
of the spread or collapse modes is determined by the initial distribution of the velocity field. It was found that the
obtained solution does not contain complex characteristic roots, which is a necessary condition for flow stability.

Introducing the function

w(t, λ) = exp
( t∫

0

ϕ(t′, λ) dt′
)
,

we reduce system (8) to one second-order integrodifferential equation

wtt − ψ2
0(λ)w−3 + 2gw

1∫

0

η0(λ)w−4 dλ = 0. (10)

Thus functions ϕ, ψ, and η are expressed in terms of w as follows:

ϕ = w−1wt, ψ = ψ0(λ)w−2, η = η0(λ)w−4

[ψ0(λ) and η0(λ) are arbitrary functions]. The structure of Eq. (10) for ψ0(λ) = 0 allows the solution to be sought

in the form w(t, λ) =
n∑

i=1

ai(λ)bi(t) with arbitrary functions ai(λ) and η0(λ). Then, we obtain the following system

of second-order ordinary differential equations for the functions bi(t):

b′′i + 2gbi

1∫

0

η0(λ)
( n∑

i=1

ai(λ)bi(t)
)−4

dλ = 0 (i = 1, . . . , n).

Below, we consider the case n = 2 and give an analytical solution in parametric form (for n = 1, integration
of the equation leads to a solution without velocity shear along the depth). The functions a1(λ) and a2(λ) are
specified so as to satisfy the inequalities l(λ) = a2(λ)a−1

1 (λ) > 0 and l′(λ) > 0; in this case, η0(λ) = a4
1(λ)l′(λ)/(2g).

Then, we obtain the following system for the functions b1(t) and b2(t):

b′′1 +
b1
3b2

( 1
(b1 + l0b2)3

− 1
(b1 + l1b2)3

)
= 0,

b′′2 +
1
3

( 1
(b1 + l0b2)3

− 1
(b1 + l1b2)3

)
= 0.

(11)
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Here l0 = l(0) and l1 = l(1). From the relation b2b
′′
1 − b1b

′′
2 = 0, which is a consequence of Eqs. (11), we find the

integral b2b′1 − b1b
′
2 = k1 = const. By means of the change of variables

m(τ) =
b1(t(τ))
b2(t(τ))

, F (τ) =
1

b2(t(τ))
, t′(τ) =

1
F 2(τ)

and with the use of the above integral, Eqs. (11) become

m′(τ) = k1, F ′′(τ) =
F (τ)

3

( 1
(m(τ) + l0)3

− 1
(m(τ) + l1)3

)
.

The first equation is easily integrated: m(τ) = k1τ + k2, and the second reduces to the Riccati equation

s′ + s2 =
1
3

( 1
(k1τ + k2 + l0)3

− 1
(k1τ + k2 + l1)3

)
, (12)

where s(τ) = F ′(τ)/F (τ). To obtain the solution of Eqs. (11) in parametric form

b1(t) =
k1τ + k2

F (τ)
, b2(t) =

1
F (τ)

, F (τ) = exp
(
s(0) +

τ∫

0

s(τ ′) dτ ′
)
, t =

τ∫

0

dτ ′

F 2(τ ′)

(ki are arbitrary constants), it is necessary to integrate the first-order ordinary differential equation of the (12). It
is difficult to obtain a solution of Eq. (12) in explicit form, but it is easy to perform its qualitative analysis and
numerical integration. Thus, the constructed class of solutions is given by the formulas

U(t, r, λ) =
b′1(t) + l(λ)b′2(t)
b1(t) + l(λ)b2(t)

r, V (t, r, λ) = 0,

H(t, r, λ) =
l′(λ)r2

2g(b1(t) + l(λ)b2(t))4
,

(13)

where l(λ) is an arbitrary function. The free-boundary equation

z = h(t, r) =
r2

6gb2(t)

( 1
(b1(t) + l0b2(t))3

− 1
(b1(t) + l1b2(t))3

)

is the equation of an elliptic paraboloid (at each fixed time). The condition H = Φλ > 0, which guarantees
reversibility of the change z = Φ(t, x, y, λ), is satisfied. We note that solution (13) is a shear one (Uλ �= 0) if the
arbitrary constant k1 is different from zero.

Let us determine what modes of motion are described by the solution obtained. Let k1 > 0 and k2 + li > 0
(i = 0, 1). Then, the spread of the parabolic cavity and retardation of the flow occurs in infinite time. The depth
of the fluid layer h and the radial velocity component U at each fixed point tend to zero as t → ∞. Figures 1
and 2 show the distributions of the fluid layer depth versus radius and time, and Fig. 3 shows the distribution of
the radial velocity versus depth. Figures 1–3 were obtained for the following parameters:

k1 = 1, k2 = 0, l(λ) = (λ+ 1)/2. (14)

For the given function l(λ), the relation between the Lagrangian variable λ and the vertical Eulerian z variable is
written as

λ =
1
b2

( 1
(b1 + b2/2)3

− 6gb2
r2

z
)−1/3

− b1 + b2/2
b2

.

If k1 < 0 and k2+li > 0 (i = 0, 1), collapse of the initial parabolic cavity occurs (on each circle r = const > 0,
the fluid layer depth increases without bound with time). The parabolic cavity collapses in finite time t∗ = t(τ∗)
[the value τ∗ = −(k2 + l0)/k1 corresponds to the infinite right side of Eq. (12)]. If k2 + l1 > 0 and k2 + l0 < 0,
collapse occurs for any sign of the constant k1.

We analyze the stability of the constructed class of unsteady rotationally symmetric solutions. The necessary
and sufficient conditions for the hyperbolicity of the integrodifferential system of equations describing plane–parallel
shear motion of an ideal fluid are formulated in [6]. The results obtained in [6] are easily extended to the rotationally
symmetric motion described by the equations
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Fig. 1. Fluid layer depth h versus radius r for t = 0 (1) and 0.2 (2).

Fig. 2. Fluid layer depth h versus time t at r = 1.
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Fig. 3. Distribution of the radial velocity U along the depth at r = 1 and t = 0 (1) and 0.2 (2).

Ut + UUr + g

1∫

0

Hr dλ =
V 2

r
, Vt + UVr = −UV

r
, Ht + (UH)r = −UH

r
. (15)

In the case of motion with a velocity profile (Uλ �= 0) monotonic along the depth, Eqs. (15) are generalized hyperbolic
equations if the following conditions are satisfied:

Δ arg (χ+/χ−) = 0, χ+ �= 0. (16)

Here

χ±(U(λ)) = 1 +
g

Ω1

1
U1 − U(λ)

− g

Ω0

1
U0 − U(λ)

− g

1∫

0

( 1
Ω(ν)

)
ν

dν

U(ν) − U(λ)
∓ πi

Uλ(λ)

( 1
Ω(λ)

)
λ
,

the increment of the argument is calculated for λ ranging from 0 to 1 and fixed values of t and r; Ω = Uλ/H ; the
subscripts 0 and 1 denote the values of the corresponding functions for λ = 0 and λ = 1. Conditions (16) guarantee
the absence of complex roots of the equation

χ(c) = 1 − g

1∫

0

H dλ

(U − c)2
= 0,
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Fig. 4. Real and imaginary parts of the function χ̃+ for λ ranging from 0 to 1; 1) t = 0; 2) t = 0.2.

which defines the propagation velocities of the characteristics c(t, r) (there are a continuous spectrum of character-
istic velocities c = cλ = U and a discrete spectrum c = c1 < min

λ
U , c = c2 > max

λ
U .

To verify conditions (16), we use the functions χ̃+ = (ϕ1 −ϕ)(ϕ−ϕ0)χ+, which, in contrast to χ±, have no
poles at the points λ = 0, 1. We note that the functions χ± and χ̃± do not depend on the variable r; therefore, the
conclusion on flow stability is valid for any finite interval of r. Figure 4 shows the real and imaginary parts of the
function χ̃+(t, λ) at various times for λ ranging from 0 to 1. A plot of the function χ̃− is obtained by reflection about
the abscissa. From Fig. 4 it follows that the argument of the complex function χ̃+ does not acquire an increment with
a change of λ (there is no circulation about zero [14]). This analysis was performed using parameters (14). From
calculations performed for solution (13) with different integration constants ki and the function l(λ), it follows that
conditions (16) are satisfied for both the spread and collapse of the parabolic cavity. Thus, the solution considered
does not contain complex characteristic roots, which is a necessary condition for flow stability.

4. Steady-State Rotationally Symmetric Solutions. The approach developed in studies [5] of plane–
parallel flows with a critical layer was used to obtain a class of exact solutions describing two-dimensional flows
with return zones.

Integration of submodel (9) leads to the solution

U(r, λ) = ±
√

2C1(λ) − r−2C2
2 (λ) − 2gh(r), V (r, λ) = r−1C2(λ),

H(r, λ) =
C3(λ)√

2r2C1(λ) − C2
2 (λ) − 2gr2h(r)

,

(17)

where the function h(r) is found from the closing relation

F (h, r) = h−
1∫

0

C3(λ) dλ√
2r2C1(λ) − C2

2 (λ) − 2gr2h(r)
= 0.

The other solution of Eqs. (9)

U = 0, V = V (r), h(r) = g−1

r∫

0

r′−1V 2(r′) dr′

describes flows without velocity shear along the depth and is not considered further. In (17), the sign changes if the
radicand vanishes. We consider the flow region in which U(r, λ) > 0. Solution (17) includes three arbitrary functions
Ci(λ). The equality C3(λ) = 1 can be achieved by an appropriate choice of the Lagrangian coordinate λ. To simplify
the further analysis, we express the function C2(λ) in terms of C1(λ) using the formula C2(λ) =

√
C1(λ) − C1(0),

and specify the function C1(λ) so as to satisfy the conditions

C′
1(λ) > 0, 0 < C1(0) < 3(g/2)2/3. (18)

744



In this case, the inequality

2(C1(λ) − gh)r2 − C1(λ) + C1(0) > 0

[the radicand in (17) in nonnegative] is satisfied for all λ ∈ [0, 1] if

r > 1/
√

2, 0 < h < a [a = C1(0)/g].

We consider the function F (h, r) at the sections h = h0, h0 ∈ (0, a). As r → ∞, the function F (h0, r) tends
to the value h0 > 0, and as r → 1/

√
2, it tends to the value h0 − (C1(0) − gh0)−1/2, which is negative by virtue

of the condition (18). In addition, for all r ∈ (1/
√

2,∞), the derivative Fr(h0, r) > 0. Therefore, at each section
h = h0, the equation F (h0, r) = 0 has a unique root.

We examine the function F (h, r) at the sections r = r0, r0 ∈ (1/
√

2,∞). As h → 0, the function F (h, r0)
tends to a negative quantity, and as h→ a, it tends to the quantity

a− 1√
2r20 − 1

1∫

0

dλ√
C1(λ) − C1(0)

,

which is positive for large values of r0 [the integral

1∫

0

(C1(λ) − C1(0))−1/2 dλ converges]. Because the function

F (h, r0) is convex upward (Fhh < 0) and changes sign in the interval h ∈ [0, a], it follows that for large values of
r0, the equation F (h, r0) = 0 has one root.

We find the root r = r∗ of the equations F (a, r) = 0. It is easy to see that

r∗ =

√
b2 + 1

2
>

1√
2

(
b = a

1∫

0

d λ√
C1(λ) − C1(0)

)
.

Because Fhh(h, r∗) < 0, F (0, r∗) < 0, F (a, r∗) = 0, and Fh(h, r∗) → −∞ as h → a, in the interval (0, a), the
equation F (h, r∗) = 0 has one more root. Thus, an interval r0 ∈ (d, r∗) exists in which the equation F (h, r0) has
two roots at the sections r = r0 [d ≥ 1/

√
2 is the minimum value of r for at which the equation F (h, d) = 0 has a

root].
The derivative of the function h = h(r), which is given implicitly by the equation F (h, r) = 0, is calculated

by the formula h′(r) = Fr/Fh and becomes infinite at the point r = d, where Fh = 0. According to the definition
of the characteristics for systems of equations with operator coefficients [6], the surface r = d is a characteristic if
the examined solution satisfies the equality

Fh = 1 − gr2
1∫

0

[2r2(C1(λ) − gh) + C1(0) − C1(λ)]−3/2 dλ
∣∣∣
r=d

= 0.

Thus, solution (17) is determined for r > d and is bounded by the characteristic r = d.
The solution of the equation F (h, r) = 0 corresponding to the functions

C1(λ) = g(λ+ 1), C2(λ) =
√
gλ, C3(λ) = 1, g = 1, (19)

is shown in Fig. 5. With a different choice of the function C1(λ) subject to conditions (18), the plot does not change
qualitatively.

From the aforesaid it follows that, for r > d, the equation F (h, r) = 0 has two branches of solutions. The
lower branch h = h1(r) is defined for all r > d; the upper branch h2(r) is defined for r ∈ [d, r∗]. We continue the
solution (17) with the function h = h2(r) to the region r > r∗. As a result, we have a steady-state solution that
describes flow with the critical layer [on a certain line in the flow region, the velocity U(r, λ) vanishes]. For r > r∗,
we specify the free-boundary equation z = h2(r) arbitrarily, requiring that the following conditions be satisfied:

h2(r∗) = a, h′2(r∗) = 0, h2(r) ≥ h1(r). (20)

If, for a certain r = r∗ > r∗, the equality h2(r∗) = h1(r∗) is satisfied, we additionally require that the equality
h′2(r∗) = h′1(r∗) be satisfied. In this case, for r > r∗, solution (17) with the functions Ci(λ) and h = h1(r) chosen
above takes place.
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Fig. 5. Typical plot of the solution of the equation F (h, r) = 0.

For r ≥ r∗, using the equation z = f(r), where

f(r) = h2(r) −
1∫

0

d λ√
2r2(C1(λ) − gh2(r)) + C1(0) − C1(λ)

, (21)

we specify the upper boundary of the region of return flow; the lower boundary of the region is given by z = 0. In
the region 0 ≤ z ≤ f(r), we construct a flow that possesses the following property: on a certain curve in this region,
the function U changes sign. For r > r∗, the solution in the external region (from the boundary of the region of
return flow to the free boundary) is defined by formulas (17) with the plus sign before the square root and the
function h = h2(r), and in the region of return flow, it is defined by the formulas

U(r, λ) = ∓
√

2(Q(λ) − gh2(r)), V (r, λ) = 0, H(r, λ) = −(rU)−1. (22)

Here Q(λ) is an unknown function; the minus sign is taken for 0 ≤ λ ≤ μ, and the plus sign for μ ≥ λ ≥ 0. The
value of μ(r) is given by the equation Q(μ) − gh2(r) = 0.

Integration of the function H on λ from 0 to μ yields the height of the line on which U = 0 [this line is given
by the equation z = f(r)/2]. Further integration from μ to 0 in the region above the line U = 0 yields the depth of
the region of return flow. Equating this quantity to the known function f(r) given by formula (21), we obtain the
integral equation for Q(λ): √

2
r

μ∫

0

d λ√
Q(λ) − gh2(r)

= f(r). (23)

Making the change of variables η = gh2(r) and s = Q(λ) and using the notation

G(η) =
r(η)f(r(η))√

2
, τ(s) = − 1

Q′(λ(s))
,

we reduce Eq. (23) to the Abel equation

−
s∫

C1(0)

τ(s)√
s− η

= G(η),

whose solution has the form

τ(s) =
1
π

s∫

C1(0)

G′(η)√
η − s

. (24)

The function Q(λ) can be found by integrating the equation

τ(Q) dQ + dλ = 0, Q(0) = C1(0).
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Fig. 6. Streamlines in a steady-state rotationally symmetric solution with a region of return flow
(the dashed curve is U = 0).
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Fig. 7. Distributions of the radial (a) and circumferential (b) velocities along the depth for
r = 1.58 (1) and 2.29 (2).

Thus, the solution in the region of return flow is constructed and defined by formulas (22). An example of using
the above algorithm to construct a solution with a region of return flow is considered below. Let the arbitrary
functions included in solution (17) be chosen according to (19). In this case, d ≈ 1.27 and r∗ =

√
5/2 ≈ 1.58.

According to (20), we continue the upper branch of the solution of the equation F (h, r) = 0 (see Fig. 5), specifying
the function h = h2(r) in the interval r ∈ [r∗, r∗]:

gh2(r) = 1 − α(r − r∗)2 (α > 0, h2(r∗) > h1(r∗)).

Then, for r > r∗, a region of return flow is formed with the upper boundary

z = f(r) =
1 − α(r − r∗)2

g
− 2

2r2 − 1

(√
2r2(1 + α(r − r∗)2) − 1 −√

α r(r − r∗)
)
.

In the region of external flow f(r) ≤ z ≤ h2(r), the solution is defined by formulas (17) with the functions Ci(λ)
and h = h2(r) specified above, and in the region of return flow 0 ≤ z ≤ f(r), it is specified by formulas (22) with
the function Q(λ) to be determined.

To find Q(λ), it is necessary to calculate the singular integral on the right side of (24). A simple analysis
shows that the function G′(η) is representable as

G′(η) = W (η)(1 − η)−1/2 [0 < s ≤ η ≤ C1(0) = 1],
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where W (η) is a continuous bounded function. This representation follows from the definition of the function

G(η) = rf(r)/
√

2, r(η) = r∗ +
√

(1 − η)/α.

Isolating singularities and changing the variable η = (1 − s)ν + s, we bring (24) to a form more convenient for
numerical integration:

τ(s) = − 1
π

1∫

s

W (η) dη√
(η − s)(1 − η)

= − 1
π

1∫

0

W̄ (ν; s) dν√
ν(1 − ν)

.

The calculation results presented in Figs. 6 and 7 were obtained for α = 1/2 and r∗ = 2.29. Figure 6
shows the free boundary z = h2(r), the boundary of the region of return flow z = f(r), the streamlines with an
indication of the flow direction (lines λ = const), and the line on which U = 0. The distributions of the radial and
circumferential velocities along the depth at r = r∗ (curve 1) and r = r∗ (curve 2) are shown in Fig. 7. We note
that, for r > r∗, the function h = h2(r) can be continued so as to reach the lower branch h = h1(r). In this case,
the region of return flow exists in an interval which is finite in r.
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